10. ARUTYUNYAN N.KH., Some Problems of the Theory of Creep. Moscow-Leningrad, Gostekhizdat, 1952.
11. MANZHIROV A.V., Axisymmetric contact problems for non-uniformly aging, layered viscoelastic foundations. PMM 47, 4, 1983.

Translated by L.K.

PMM U.S.S.R., Vol.49,No.6,pp. 782-786,1985
0021-8928/85 \$10.00+0.00
Printed in Great Britain
Pergamon Journals Ltd.

CONTINUOUS THEORY OF DISLOCATIONS AND DISCLINATIONS in a TWO-dIMENSIONAL MEDIUM*

YU.2. POVSTENKO

A system of equations describing mobile defects in a two-dimensional Cosser at continum, i.e. in a medium whose motion is determined by the displacement field and rotation field independent of it, is obtained. The basic equations of the static theory / $1-5 /$ and dynamic continuous theory /6-12/ of defects (dislocations and disclinations) are known for a three-dimensional medium, obtained by a variety of methods. A dislocation model of the misalignment surfaces used in describing the Martensitic transformations $/ 2,13 /$ is proposed. The aislocation representations were used in / $24-16 /$ to describe the grain boundaries, and the difference dislocations within the boundaries of separation were studied in $/ 17,18 /$. The dislocation structure of intexnal boundaries of separation was described in / $19,20 /$ using the differential geometry characteristics (torsion and curvature tensors, non-holonomic object) of three-dimensional media. Surface dislocations and disclinations of the separate Volterra distortions-type were studied in/21/, with liquid crystals and various biological objects indicated as the suitable areas of application of these concepts.

1. Surface del operator. A surface imbedded in a three-dimensional Euclidean space is described by the equations $x^{i}=x^{i}\left(y^{2} \cdot y^{2}\right)$ where y^{α} are curvilinear coordinates on the surface. Henceforth, the Latin indices will take the values of $1,2,3$, and the Greek indices values of 1, 2. Regarding the radius vector r of a point on the surface as a function of the coordinates y^{a}, we introduce the local tangentiai basis vectors $\mathbf{a}_{a}=$ ofr $_{\text {a }}{ }^{a}$ and the normal vector $\mathbf{n}=$ $j_{1} \varepsilon^{\alpha \beta_{a_{\alpha}}} \times a_{i}$ where $\varepsilon^{\alpha \beta}$ are the components of the Levi-Civita surface vector $\varepsilon_{\Sigma}=\varepsilon^{a \beta} \beta_{a_{\alpha}} a_{B}$.

The surface del operator $/ 22 /$

$$
r_{\Sigma}=\mathrm{a}^{2} \partial / \partial y^{2}
$$

enables us to define, for the tensor T_{2} defined on the surface, the operations of surface grad, div ana curl

$$
\operatorname{grad}_{\mathbf{\Sigma}} \mathbf{T}_{\mathbf{\Sigma}} \equiv \Gamma_{\mathbf{\Sigma}} \mathrm{T}_{\mathbf{\Sigma}}, \quad \mathrm{di} \mathrm{X}_{\mathbf{\Sigma}} \mathbf{T}_{\mathbf{\Sigma}} \equiv \Gamma_{\mathbf{\Sigma}} \cdot \mathrm{T}_{\mathbf{\Sigma}}, \quad \operatorname{rot}_{\mathbf{\Sigma}} \mathbf{T}_{\Sigma} \equiv \Gamma_{\mathbf{\Sigma}} \times \mathbf{T}_{\mathbf{\Sigma}}
$$

The rules of action of the surface del operator on the products of the guantities are identical to those of the three-dimensional del operator $\Gamma=3^{k} 00^{k} x^{k}$ (see e.g. /23/. Essential differences due to the surface curvature appear on the second application of the two-dimensionel del operator. For example, the following relations hold:

$$
\begin{gather*}
\Gamma_{\Sigma} \times\left(\Gamma_{\Sigma} T_{\Sigma}\right)=\varepsilon_{\Sigma} \cdot b \cdot \Gamma_{\Sigma} T_{\Sigma} \tag{1.1}\\
\Gamma_{\Sigma} \cdot\left(\Gamma_{\Sigma} \times T_{\Sigma}\right)=-2 H \mathbf{n} \cdot\left(\Gamma_{\Sigma} \times T_{\Sigma}\right)+\Gamma_{\Sigma} \cdot\left(\varepsilon_{\Sigma} \cdot b \cdot T_{\Sigma}\right) \tag{1,2}
\end{gather*}
$$

while in the three-dimensional case we have

$$
\begin{equation*}
\Gamma \times(\Gamma T)=0, \Gamma \cdot(\Gamma \because T)=0 \tag{1.3}
\end{equation*}
$$

Here $b=b_{\alpha \beta^{a}} a^{B}$ is the tensor of the second quadratic form of the surface and $H=1 / b_{\alpha}{ }^{a}$. is the mean surface curvature.
2. Defects in the three-dimensional Cosserat continuum. To order to facilitate the presentation of the corresponding results for the two-dimensional Cosserat continuum, we shall give the basic equations for the three-dimensional medium (e.g./24-26/).

The non-symmetric total deformation r and flexure-torsion x tensors are expressed in terms of the displacement u and rotation ω vector thus

$$
\gamma=\Gamma u+g \times \omega, \quad x=\Gamma \omega
$$

[^0]and satisfy the conditions of compatibility following from the first formula of (1.3)
$$
\nabla \times \gamma-x^{*}+(\operatorname{tr} x) g=0 \quad(\operatorname{tr} x \equiv g ; x), \quad \nabla \times x=0
$$

The asterisk denotes transposition, and g is a metric tensor.
Let us write the quantities y and x in the form of a sum of the elastic and plastic components denoted, respectively, by the indices e and p, and introduce the dislocation and disclination θ density tensors

$$
\begin{equation*}
\alpha=-\nabla \times \gamma^{p}+x^{p *}-\left(\operatorname{tr} x^{p}\right) g, \quad \theta=-\nabla \times x^{p} \tag{2.1}
\end{equation*}
$$

satisfying, on the basis of the second relation of (1.3), the conditions (ε is a three-dimensiona Levi-Civita tensor)

$$
\begin{align*}
& \nabla \cdot \alpha-\varepsilon: \theta=0, \nabla \cdot \theta=0 \\
& \left(\Gamma_{k} \alpha^{k m}-\varepsilon^{m i j} \theta_{i j}=0, \nabla_{k} e^{k m}=0\right)
\end{align*}
$$

The above conditions imply that the disclinations do not terminate within the body and the dislocation may terminate on the disclinations whose density is an asymmetric tensor $/ 26 /$. In the linear theory we have (a dot denotes time differentiation)

$$
\begin{equation*}
\gamma^{\prime}=\Gamma v+g \times w, \quad \mathbf{x}^{\prime}=\nabla w\left(v=u^{\prime}, w=\omega^{\circ}\right) \tag{2.3}
\end{equation*}
$$

The tensors of the dislocation flux J and disclination flux s are introduced as follows 11/:

$$
\begin{equation*}
J=\gamma^{p}-r w^{p}-g \times w^{p}, \quad S=x^{p}-\nabla w^{p} \tag{2.4}
\end{equation*}
$$

and the formulas (2.1),(2.3), (2.4) yield the kinematic equations

$$
\begin{align*}
& \boldsymbol{a}=-\mathrm{r}^{\prime} \times \mathrm{J}+\mathrm{S}^{*}-(\mathbf{t r S}) \mathrm{g}, \quad \theta=-\nabla \times \mathbf{S} \tag{2.5}\\
& \left(a^{k m}=-\varepsilon^{k i j} \Gamma_{i} J_{j}{ }^{m}+S^{m t}-S_{i} \cdot{ }^{i}{ }^{k m}, \theta^{k m}=-\varepsilon^{k i j} \Gamma_{i} S_{j}{ }^{m}\right)
\end{align*}
$$

3. Defects in the two-dimensional Cosserat continuum. The non-symmetric tensors of total deformation i_{I} and flexure-torsion x_{Σ} are expressed in terms of the displacement u_{Σ} and rotation ω_{s} vectors as follows:

$$
\begin{equation*}
i_{\Sigma}=\Gamma_{\Sigma} u_{\Sigma}+a \times \omega_{\Sigma}, \quad x_{\Sigma}=\Gamma_{\Sigma} \omega_{\Sigma} \tag{3.1}
\end{equation*}
$$

and satisfy, by virtue of (1.1), the conditions of compatibility (a is the metric tensor on the surface)

$$
\begin{align*}
& \Gamma_{\Sigma} \times \gamma_{\Sigma}-\varepsilon_{\Sigma} \cdot b \cdot v_{\Sigma}+n \mathrm{nt} \mathrm{r}_{\Sigma} x_{\Sigma}-n \mathrm{n} \cdot x_{\Sigma} *=0 \tag{3.2}\\
& \Gamma_{\Sigma} \times x_{\Sigma}-\varepsilon_{\Sigma} \cdot b \cdot x_{\Sigma}=0\left(\operatorname{tr}_{\Sigma} x_{\Sigma} \equiv a: x_{\Sigma}\right)
\end{align*}
$$

The surface disiocation α_{Σ} and disclination θ_{Σ} density tensors

$$
\begin{align*}
& \alpha_{\Sigma}=-r_{\Sigma} \times \gamma_{\Sigma}^{p}+\varepsilon_{\Sigma} \cdot b \cdot \gamma_{\Sigma}^{2}-n n t_{\Sigma} x_{\Sigma}^{p}+n n \cdot \times x_{\Sigma}^{p^{*}} \tag{3.3}\\
& \theta_{\Sigma}=-r_{\Sigma} \times x_{\Sigma}^{p}+\varepsilon_{\Sigma} \cdot b \cdot x_{\Sigma}^{p}
\end{align*}
$$

satisfy, by virtue of (1.2), the conditions

$$
\begin{equation*}
\Gamma_{\Sigma} \cdot \alpha_{I}+2 H n \cdot \alpha_{I}=0, \quad \Gamma_{\Sigma} \cdot \theta_{I}+2 H n \cdot \theta_{I}=0 \tag{3.4}
\end{equation*}
$$

Let us define the surface dislocation flux J_{Σ} and disclination fiux \mathbf{S}_{Σ} tensors

$$
\begin{equation*}
J_{\Sigma}=\gamma_{\Sigma}^{p}-\Gamma_{\Sigma} v_{\Sigma}^{p}-a \times w_{\Sigma}^{p}, \quad S_{\Sigma}=x_{\Sigma}^{p}-\Gamma_{\Sigma} w_{\Sigma} \tag{3,5}
\end{equation*}
$$

Then we obtain for α_{Σ} and θ_{Σ} the two-dimensional analogues of the equations (2.5)

$$
\begin{align*}
& \alpha_{\Sigma}=-r_{\Sigma} \times J_{\Sigma}+\varepsilon_{\Sigma} \cdot b \cdot J_{\Sigma}-n n t_{\Sigma} s_{\Sigma}+n n \cdot S_{\Sigma}^{*} \tag{3.6}\\
& \theta_{\Sigma}=-r_{\Sigma} \times S_{\Sigma}+\varepsilon_{\Sigma} \cdot b \cdot s_{5}
\end{align*}
$$

or, in terms of the components,

$$
\begin{align*}
& \alpha^{\text {(r)Y}}=-\varepsilon^{\alpha f}\left(\Gamma_{\alpha} J_{\beta}^{\gamma}-b_{\alpha}^{Y} J_{\beta(n)}\right)+S^{Y(n)} \tag{3.7}\\
& \alpha^{(n)(n)}=-\varepsilon^{\alpha \beta}\left(\Gamma_{\alpha} J_{\beta(n)}+b_{\alpha \gamma} J_{\beta}^{V}\right)-S_{\alpha}^{\alpha} .
\end{align*}
$$

$$
\begin{aligned}
& \theta^{(n)(n)}=-\varepsilon^{a s_{j}}\left(\Gamma_{\alpha} S_{\rho(n)}+b_{\alpha y} s_{B}^{\gamma}\right)
\end{aligned}
$$

We note that the first index accompanying the tensors $\gamma_{\Sigma}, x_{\Sigma} . J_{\Sigma}$ and S_{Σ} is the surface index, while the second index is, in general, spatial, and the first index accompanying the tensors $\alpha_{\mathbf{I}}$ and $\boldsymbol{\theta}_{\mathbf{I}}$ always refers to the nomal to the surface, while the second one is spatial.

Taking the structure of the tensors α_{I} and θ_{I} into account, we conclude that Eqs. (3.4) will be satisfied identically: for a two-dimensional continuum the dislocation and disclination lines are directed along the normal to the surface and are, naturally, not terminated within the body.
4. Burgers and Frank surface dislocation and disclination vectors. The Burgers vector $b_{\mathbf{I}}$ and Frank vector $\Omega_{\mathbf{I}}$ are defined as follows:

$$
\begin{equation*}
\left[u_{\Sigma}\right]=\oint_{\varepsilon_{\Sigma}} d u_{\Sigma}=b_{\Sigma}+\mathbf{a}_{\Sigma} \times \mathbf{r}_{0 \Sigma}, \quad\left[w_{\underline{\Sigma}}\right]=\oint_{C_{\Sigma}} d w_{\Sigma}=\Omega_{\Sigma} \tag{4.1}
\end{equation*}
$$

where C_{Σ} is the Burgers contour lying on the surface and $P_{0 \Sigma}$ is the radius vector of the beginning and end of the reading on the contour c_{Σ}.

Since $d u_{\Sigma}=d r \cdot \Gamma_{\Sigma} u_{\Sigma} \cdot d \omega_{\Sigma}=d r \cdot \Gamma_{\Sigma} w_{\Sigma}$, we obtain, using Eqs. (3.1) and Stokes' formula

$$
\begin{equation*}
b_{\Sigma}=\int_{\Sigma} n \cdot\left(r_{\Sigma} \times \gamma_{\Sigma}-\left(\Gamma_{\Sigma} \times x_{\Sigma}\right) \times r-n n \cdot x_{\Sigma} *+n n \operatorname{tr}_{\Sigma} x_{\Sigma}\right) d \Sigma, \quad \Omega_{\Sigma}=\int_{\Sigma} n \cdot\left(r_{\Sigma} \times x_{\Sigma}\right) d \Sigma \tag{4.2}
\end{equation*}
$$

Substituting (3.3) into (4.2) and remembering that $\mathbf{n} \cdot \boldsymbol{e}_{\Sigma} \cdot \mathbf{b} \cdot \gamma_{\mathbf{\Sigma}}=\mathbf{n} \cdot \boldsymbol{e}_{\Sigma} \cdot \mathbf{b} \cdot \boldsymbol{x}_{\mathbf{\Sigma}}=0$, we obtain the two-dimensional analogues of the corresponding three-dimensional formulas for the Burgers and Frank surface defect vectors

$$
\begin{equation*}
b_{\Sigma}=\int_{\Sigma} n \cdot\left(\alpha_{\Sigma} \cdots \theta_{\Sigma} \times r\right) d \Sigma, \quad \Omega_{\Sigma}=\int_{\Sigma} n \cdot \theta_{\Sigma} d \Sigma \tag{4.3}
\end{equation*}
$$

Following the terminology of $/ 21 /$, we shall call the dislocations with Burgers vectors lying in the tangent plane (normal to the surface) and disclinations with Frank vectors normal to the surface (lying in the tangent plane), the internal (extemal) defects.
5. Connection with non-Riemannian geometry. Three-dimensional continuum. We will determine, in the space of affine connectivity, for the tensor T with components $T_{\text {, }}^{k}\left(\xi^{i} \cdot t\right)$, the tensor $D T$ with components

$$
(D T)_{m}^{k}=\nabla_{i} F_{\cdot m}^{k} \Sigma_{i}^{i}
$$

where the covariant derivative is calculated using the affine connectivity coefficients $\Gamma_{i j}{ }^{k}$

The quantities $\Gamma_{i}{ }^{*}$ are, generally speaking, non-symmetric with respect to the lower indices, and the antisymmetric part $\Gamma_{[i, j}^{k}$ defines the torsion tensor $\Gamma_{i, j}^{k}=s_{i j}{ }^{k}$.

The following relation holds for the tensor $\mathrm{V}=D^{\prime} D \mathrm{~T}-D D^{\prime} \mathrm{T},\left\langle R_{r s_{i}}{ }^{k}\right.$ are the components of the curvature tensor)

The curvature and torsion tensors satisfy the Bianchi-padov identity $/ 27 /$.
In the geometrical theory of defects the torsion tensor $s_{i q}{ }^{k}$. is placed in correspondence with the dislocation density tensor $\alpha^{* / 1} / 2 /$, and the curvature tensor $R_{p g r s}$ with the disciination density tensor $\theta^{m: / 5 /}$
and the Bianchi-Padov iantity yielas the Eqs. (5)
representing the non-ineax generalizetion of Eqs.(2.2).
Following /12/ we introduce the tersor $D^{\top T}$ with components

$$
\begin{aligned}
& \left(D^{\tau} T\right)_{m}^{k}=\Gamma^{i} T_{m}^{k}{ }_{m}^{i}
\end{aligned}
$$

The components of the teasor $h_{4}^{\text {: }}$ can be regarded as components of the time derivatives of the local basis vectors in tangential space et the corresponding point. In order not to increase the notatior empioved, we shail write the tensor components in the Lagrangiar form without the "roofs".

The tenscr $N=D^{T} D T-D D^{\top}$ has the foliowing corponents:
where

$$
\begin{equation*}
P_{i n}^{m}=r_{t h}^{m}-\Gamma_{i} h_{n}^{m} \tag{5.3}
\end{equation*}
$$

Thus we finc, in the space of affine connectivity whose properties vary with time, in addition to the curvature and torsion tensors, two new characteristics, namely the tensors $h_{k}{ }^{m}$: and $P_{s h}{ }^{m}$.

Formulas (5.2) and (5.4) yield the evolutionary equations for the components of the torsion and curvature tensors

In the Euclidean space $S_{i j}^{m}=0, R_{r i}^{m}=0, p_{14}^{m}=0 . h_{k}^{m}=\Gamma_{k} i^{m}$ where i^{m} are the velocity vector components, and from fomula (5.4i, it follows that $\Gamma_{i}^{\prime m}=r_{i} r_{k} m_{i}$.

In the general case the tensors h_{k}^{m} and $P_{s k}$ are connected with the dislocation flux J_{k}^{m} and the disclination flux $S_{k}{ }^{m}$ as follows:

$$
\begin{equation*}
J_{k}^{m}=\nabla_{k} v^{m}-h_{k}^{m}, S_{k}^{m} .=-1 / 2 \varepsilon^{m ז q} r_{k p q} \tag{5.6}
\end{equation*}
$$

The choice of sign in these formulas is a matter of choice. Unlike in /12/, in the present paper the sign is chosen so that the sign of J and S in the last formulas coincides with the sign of the corresponding quantities in (2.4).

The evolutionary Eqs. (5.5) yield the non-linear equations of the continuous theory of mobile defects /12/. Neglecting the non-linear terms in them yields the conditions (2.5).
6. Relation to non-Riemannian geometry. Two-dimensional continuum. Let a tensor T_{Σ} with components $T_{\cdot \beta}^{a}\left(\eta^{\gamma}, \tau\right)$ be given on the surface Σ with normal n. The components of the tensor $D T_{\Sigma}$ have the form

$$
\begin{aligned}
& \left(D T_{\Sigma}\right)_{\cdot \beta}^{\alpha}=\nabla_{\gamma} T_{\cdot \beta}^{\alpha} d \eta^{\gamma},\left(D T_{\Sigma}\right)^{\alpha(n)}=T_{\cdot \beta}^{\alpha} b_{\gamma}^{\beta} d \eta^{\gamma} \\
& \left(D T_{\Sigma}\right)_{(n) \beta}=T_{\cdot \beta}^{\alpha} b_{\gamma \alpha} d \eta^{\gamma}
\end{aligned}
$$

where the covariant derivative

$$
\nabla_{\gamma} T_{\cdot \beta}^{\alpha}=\cdot \partial T_{\cdot \beta}^{\alpha} / \partial \eta^{\gamma}+G_{\gamma \rho}^{\alpha} T_{\cdot \beta}^{\rho}-G_{\gamma \beta}^{\rho} T_{\cdot \rho}^{\alpha}
$$

is calculated using the asymmetric coefficients of connectivity $G_{\alpha \beta}^{\gamma}$; the coefficients of the second quadratic form of the surface $b_{\alpha \beta}$ are also, generally speaking, asymmetric.

Let us define the tensor $D^{\tau} T_{\Sigma}$ in terms of its components

$$
\begin{aligned}
& \left(D^{\tau} T_{\Sigma}\right)_{\cdot \beta}^{\alpha}=\nabla^{\tau} T_{\cdot \beta}^{\alpha} d \tau_{1}\left(D^{\tau} T_{\Sigma}\right)^{\alpha(n)}=T_{\cdot \beta}^{\alpha} h^{\beta(n)} d \tau \\
& \left(D^{\tau} T_{\Sigma}\right)_{(n) \beta}=T_{\cdot B}^{\alpha} h_{\alpha(n)} d \tau
\end{aligned}
$$

where

$$
\nabla^{\tau} T_{\beta}^{\alpha}=T_{\beta}^{\alpha}+h_{\rho}^{\alpha} T_{\beta,}^{\rho}-h_{\beta}^{\rho} T_{\cdot \beta}^{\alpha}
$$

and where the components $h_{\alpha}^{\beta}, h^{\alpha(n)}$ of the tensor h_{s} can be regarded as components of the time derivatives of the local tangential basis vectors and of the normal to the surface.

In ther case of a Riemannian surface imbedded in the Euclidean space, the components of the tensor b_{Σ} are expressed in terms of the velocity vector components /28/ thus:

$$
h_{\alpha \cdot}^{\beta}=\Gamma_{\alpha} i^{v^{\alpha}}-b_{\alpha}^{\beta_{v}} v^{(n)}, \quad h_{\alpha(n)}=F_{\alpha} v^{(n)}+b_{\alpha \beta} v^{\beta}
$$

The following expressions hold for the components of the tensor $W_{\Sigma}=D^{\imath} D T_{\Sigma}-D D^{\top} T_{\Sigma}$:

$$
\begin{align*}
& W_{\cdot \beta}^{\alpha}=\left(P_{\gamma \beta}^{\alpha} T_{\beta}^{\rho}-P_{\gamma \beta}{ }^{(1} T_{\cdot \rho}^{\alpha}\right) d \tau d \eta^{\gamma} \tag{6.1}\\
& W^{\alpha(n)}=P_{V \beta(n)} T^{\alpha \beta} d \tau d \eta^{\gamma}, \quad \Pi_{(\eta) \&}^{\gamma}=P_{\gamma \alpha(T)} T_{\beta}^{\alpha} d \tau d \eta^{\gamma}
\end{align*}
$$

where the components of the tensor P_{Σ} are given by

$$
\begin{align*}
& P_{\alpha p(n)}=b_{\alpha \mid \beta}-\Gamma_{\alpha} h_{\beta(n)}-b_{\alpha \beta} h_{\beta}^{\rho} . \tag{6.2}
\end{align*}
$$

Formulas (6.2) and an expression analogous to (5.2) together yield the evolutionary equations for the components of the torsion and curvature tensor

Let us find the components of the dislocation surface density α_{2} and disclination surface density $\theta_{\mathbf{I}}$ tensors as follows:

$$
\begin{align*}
& \alpha^{(n) Y}=\varepsilon^{\alpha, \rho} S_{\alpha \beta}{ }^{\gamma}, \quad \alpha^{(n)(n)}=\varepsilon^{\alpha \beta} b_{\alpha \beta} \tag{6.4}\\
& \theta^{(n) \gamma}=\varepsilon^{\alpha \hat{\beta}_{\varepsilon} \nu b} \Gamma_{\alpha} b_{\beta \varepsilon}+\varepsilon^{\nu \beta_{b}}{ }_{\alpha \beta} \alpha^{(n) \alpha} \\
& \theta^{(n)(n)}={ }^{1}{ }_{3}{ }^{\alpha \rho_{\varepsilon}}{ }^{\nu \delta}\left(R_{\alpha \beta \gamma \delta}-b_{\alpha \delta^{\prime}} b_{\beta \gamma}+b_{\beta \delta} b_{\alpha \gamma}\right)
\end{align*}
$$

and connect the quantities h_{Σ} and P_{Σ} with the dislocation J_{Σ} and disclination s_{Σ} surface flux tensors as follows:

$$
\begin{align*}
& J_{\alpha^{\prime}}{ }^{\prime}=\nabla_{\alpha} \nu^{\beta^{\prime}}-b_{\alpha}{ }^{\beta_{1}}{ }^{(n)}-k_{\alpha}{ }^{\beta} . \tag{0.0}\\
& J_{a(n)}=\Gamma_{\alpha^{v^{\prime}}}{ }^{(n)}+b_{\alpha 1^{1}} 1^{\beta}-h_{\alpha(n)} \\
& S_{\alpha}{ }^{\beta}=-\varepsilon^{\beta \gamma} P_{\alpha \gamma(n)}, \quad S_{\alpha(n)}=-1 / \varepsilon \varepsilon^{\beta \gamma} P_{\alpha \beta \gamma}
\end{align*}
$$

Using the formulas (6.4), (6.5) we obtain, from (6.2), (6.3), the non-linear equations of the continuous theory of mobile defects in a two-dimensional medium

$$
\begin{align*}
& \alpha^{\cdot(n) \gamma}=-\varepsilon^{\alpha \beta}\left(\nabla_{\alpha} J_{\beta}^{\gamma}-b_{\alpha}^{Y} \cdot S_{\beta(m)}\right)+s^{\gamma(n)}-a^{(n) \gamma_{h_{\beta}}^{\beta}}- \tag{6.6}\\
& \alpha^{(n) \beta}\left(\nabla_{\beta} v^{v}-b_{\beta} v^{(n)}\right)+\varepsilon^{\beta \gamma} v_{p} \theta^{(n)(n)}-\varepsilon^{\beta \gamma} \theta_{(m)} b^{(n)}+a^{(n)(n)} h^{v(n)} \\
& \alpha^{(n)(n)}=-\varepsilon^{\alpha \beta}\left(\nabla_{\alpha} J_{\beta(n)}+b_{\alpha \gamma} J_{\beta}^{\gamma} .\right)-S_{q}^{\alpha}-\alpha^{(n)(\beta)} h_{\beta}^{\beta} . \\
& \alpha^{(n) \beta}\left(\nabla_{B^{2}}{ }^{(n)}+b_{\beta \gamma} v^{\nu}\right)+\varepsilon_{\beta \gamma} \theta^{(n) \beta_{v}}{ }^{v} \\
& \theta^{\cdot} \cdot(n) \gamma=-\varepsilon^{\alpha \beta}\left(\nabla_{\alpha} S_{\beta}^{\gamma}-b_{\alpha}^{y} S_{\beta(\pi)}\right)-\theta^{(n) \varphi_{\beta}} h_{\beta}^{\beta}-\theta^{(n) \beta_{h_{\beta}}^{\gamma}}- \\
& \alpha^{(n) \beta} \mathcal{S}_{\mathrm{b}}{ }^{y} \cdot+\theta^{(n)(n)} h^{\nu(n)} \\
& \theta^{\cdot} \cdot(n)(n)=-\varepsilon^{\alpha \beta}\left(\nabla_{\alpha} S_{\beta(n)}+b_{\alpha \gamma} S_{\beta}^{\gamma}\right)-\alpha^{(n) \psi} S_{\gamma(n)}-\theta^{(n)(n)} h_{\beta-}{ }^{\beta}-\theta^{(n) \alpha} h_{\alpha(n)}
\end{align*}
$$

When the non-linear terms are neglected the linear Eqs. (3.7) follow from (6.6).

REFERENCES

1. KONDO K., On the geometrical and physical foundations of the theory of yielding. In: Proc. 2nd Jap. Nat. Congr. Appl. Mech. Tokyo: Sci. Council of Japan, 1952.
2. BILBY B.A., BULLOUGH R. and SMITH E., Continuous distributions of dislocations: a new application of the methods of non-Riemannian geometry. Proc. Roy. Soc. London. Ser. A, 231, 1185, 1955.
3. KRÖNER E., Kontinuumstheorie dex Versetzungen und Eigenspannungen. B.: Springer, 1958.
4. POBEDRYA B.E., On the geometrical treatment of the dislocation theory. Vestn. MGU, Matem. Mekhan., 1, 1964.
5. ANTHONY K.-H., Die theorie der disklinationen. Arch. Ration. Mech. Analysis, 39, 1, 1970.
6. KOSEVICH A.M., Dynamic theory of dislocations. Uspekhi fiz. nauk, 84, 4, 1964.
7. GÜNTHER H., Zur nichtinearen kontinuumstheorie bewegter versetzungen. B.: Akademie-verlag, 1967.
8. BERDICHEVSKII V.L, and SEDOV I.I., Dynamic theory of continuously distributed dislocations. Its relation to the theory of plasticity. PMM 31, 6, 1967.
9. KLUGE G., Zur Dynamik der allgemeinen Versetzungstheorie bei Berücksichtigung von Momentenspannungen. Intem. J. Engng Sci, 7, 2, 1969.
10. Gtinther h., Zur Kinematik von Disklinationen. Phys. Stat. Solidi. Ser. B, 49, 2, 1972.
11. KOSSECKA E. and DewIT R., Disclination kinematics. Arch. Mech., 29, 5, 1977.
12. PODSTRACH YA.S. and POVSTENKO YU.Z., On a version of the non-linear equations of the continuous theory of mobile defects. Doki. Akad. Nauk SSSR, 269, 2, 1983.
13. BULIOUGH F. and BILBY B.A., Continuous distributions of dislocations: surface dislocations and the crystallography of martensitic transformations. Proc. Phys. Soc. Sec. B, 69, 444, 1956.
14. MARCINKOWSKI M.J. and SADANANDA K., Unification of the coincidence-site-lattice and continum theories of grain boundaries. Acta Cryst. Ser. A., 31, 3, 1975.
15. MARCINKOWSKI M.J., Unified theory of grain boundaries. Phys. Stat. Solia. Ser. A, 73, 2, 1982.
16. MARCINKOWSKI M.J., A new approach to the theory of grain boundaries. J. Mater. Sci. 18, 3. 2983.
17. BRAININ G.E., LIKHACHEV V.A. and STREL'TSOV V.A., Difference dislocations in interphase Martensite-type boundaries. Izv. Vuz, Fizika, 6, 1981.
18. BRAININ G.E., VOLKOV A.E. ana LIKHACHEV V.A., Continuous description of a succession of dislocations and of the formation of difference dislocations during the motion of internal boundaries of separation. Poverkhnost'. Fizika, khimya, mekhanika, 7, 1983.
19. MARCINKOWSKI M.J., The differential geometry of grain boundaries. tilt boundaries. Acta Cryst. Ser. $A, 33,6,197 \%$.
20. MARCINKOWSKI M.J., The differential geometry of intemal surfaces. Arch. Mech., 31, 6, 1979.
21. HARRIS W.F., The geometry of disclinations in crystals. In: Surface and Defect Properties of Solids, 3, 1974.
22. WEATHERBURN C.E., Differential geometry of three dimensions. Cambridge: Cambridge Univ. press, 1927.
23. LUR'E A.I., Theory of Elasticity. Moscow, Nauka, 1970.
24. SCHAEFER H., Eine feldtheorie der versetzungen im cosserat-kontinuum. Z. angew. Math. Phys. B. 20, 6, 1969.
25. KLUGE G., Uber der zusammenhang der allgemeiner verstzungstheorie mit dem cosserat-kontinuum. Wiss. 2. Techr. Hochsch. Magdeburg, B.13, 5, 1969.
26. Dewit R., Linear theory of static disclinations. In: Fundamental aspects of dislocation theory, Washington: U.S. Government Printing Office, 1, 1970.
27. NORDEN A.P., Affine Connectivity Spaces. Moscow, Nauka, 1976.
28. POVSTENKO YU.Z. and PODSTRIGACH YA.S., Time differentiation of tensors defined on a surface moving through a three-dimensional Euclidean space. PMM 47, 6, 1983.

[^0]: *Prikl.Matem.Mekhan.,49,6,1026-1031,1985

