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CONTINUOUS THEORY OF DISLOCATIONS AND DISCLINATIONS 
IN A TWO-DIMENSIONAL MEDIUM* 

YU.2. POVSTENKO 

A system of equations describing mobile defects in a two-dimensional 
Cosser at continuum, i.e. in a medium whose motion is determined by the 
displacement field and rotation field independent of it, is obtained, 

The basic equations ofthe static theory /l-5/and dynamic continuous 
theory /6-12/ of defects Cdislocations and disclinations) are known for 
a three-dimensional medium, obtained by a variety of methods. A dis- 
location model of the misalignment surfaces used in describing the 
Martensitic transformations /2, 13/ is proposed. The dislocation 
representations were used in /14-16/ to describe the grain boundaries, 
and the difference dislocations within the boundaries of separation were 
studied in /17, 18/. The dislocation structure of internal boundaries 
of separation was described in /19, 20/ using the differential geometry 
characteristics (torsion and curvature tensors, non-holonomic object) of 
three-dimensional media. Surface dislocations and disclinations of the 
separate Volterra distortions-type were studied in/2l/,withliquid 
crystals and various biological objects indicated as the suitable areas 
of application of these concepts. 

1. Surface de1 operator. A surface imbedded in a three-dimensional Euclidean space 
is described by the equations I' = I'(+.~~I where ya are curvilinear coordinates on the surface. 
Henceforth, the Latin indices will take the values of 1, 2, 3, and the Greek indices values of 
1, 2. Regarding the radius vectcr r of a po int on the surface as a function of the coordinates 
y", we introduce the local tangential basis vectors ea = &a$ and the normal vector a= 
';* @a, x Bi where c=s are the compcnents cf the Levi-Civita surface vector er+~ bB aoag. 

The surface de1 operator /22/ 
rr = a%ldyQ 

enables us to define, for the tensor T, defined on the surface, the operations of surface grad, 
div and curl 

The rules of action of the surface de1 operator on the products of the quantities are 
identical to those of the three-dimensional de1 operator T=aka6r" (see e.g. /23/. Essential 
differences due tc the s?urface curvat'ure appear on the seCGnd application cf the two-dimensicnal 

de1 operator. For example, the following relations hold: 

rr x (rrTr) =~r.b.r~T~ (1.1) 

Tr.(Tr x Tr)= - 2lfn.(T, x T,i, rr-(~~.b.T,! (1.2) 

while in the three-dimensional case we have 

'c x (TT) = 0, T-(T .*- T) = 0 (1.3) 

Here b = b,gazaE is the tensor of the second quadratic form of the SUrfaCe and H=l:&,a. 
is the mean surface curvature. 

2, Defects in the three-dimensional Cosserat continuum. To order to facilitate 
the presentation of the corresponding results for the two-dimensional Cosserat Continuum, we 

shall give the basic equations for the three-dimensional medium (e.g. /24-26/). 
The non-symmetric total deformation i and flexure-torsion y. tensors are expressed in 

terms of the displacement u and rotation o vector thus 

y=ru-+gxo, xt:to 
*prikl.Matem.Mekhan.,49,6,1026-i031,1965 
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and satisfy the conditions of compatibility following fromthefirst formula of (1.3) 

Gxy-z@+(trx)g=O (trx5g:+ Cxx=O 

The asterisk denotes transposition, and g is a metric tensor. 
Let us write the quantities y and x in the form of a sum of the elastic and plastic 

components denoted, respectively, by the indiceseand p, and introduce the dislocation a and 

disclination 0 density tensors 
(I=- rxVP+%Y*-(trXP)g, es-vxxp (2.1) 

satisfying, on the basis of the second relation of (1.31, the conditions (e is a three-dimensiona 
Levi-Civita tensor) 

C.a- s:8=O,V.t3=0 (2.2j 

f+ik~~~-~Fn%i,= 0, v,e*“= 0) 

The above conditions imply that the disclinations do not terminate within the body and 
the dislocation may terminate on the disclinations whose density is an asymmetric tensor /26/. 

In the linear theory we have (a dot denotes time differentiation) 

f'=YV.+-gxW, Y. = Vw((v r u', v = (d') (2.3) 

The tensors of the dislocation flux J and disclination flux S are introduced as follows 
fll/: 

J=.~‘~-Tvp-gxwp, S=;x’P-Vwp 12.4) 

and the formulas (2.1),(2.3), (2.4) yield the kinematic equations 

a'=-YxJJSS*-(trS)g, 8.=-VxS (2.5) 

(a 'h'nz = _ E':l~r,~ ,m + ~mt_ S,,lgkm, 
L 2 1 

C)'&VI =_Ekij r,g 7 

3. Defects in the two-dimensional Cosserat continuum. The non-symmetric tensors 
of total deformation Q and flexure-torsion xX are expressed in terms of the displacement ur 
and rotation ox vectors as follows: 

TI =;Y2UZ?' x Cl+, XX== YzOr (3.1) 
and satisfy, by virtue of (l.l), the conditions of compatibility (a is the metric tensor on 
the surface! 

The surface dislocation or and disclination 8, density tensors 

satisfy, by virtue of il..Z), the conditions 

Yz.az-; ?Hn.az= 0, 'i‘,.9, ;2Hn.01=0 - ^ 
Let us define the scrface dislocation flux Jr anC: disclination flux S, tensors 

J, = ~2 - 'c,VrP- a x wrp, s, =x4- Y$XIP 

Then we obtain for a2 and 8-' the two-dimensional analogues of the equations (2.5) 

a'= -Tzx J,i_&r*b*J,-nnntr,S,+an.S,+ 

8" =-TV x S,+ +.b.S, 

(3.2) 

(3.3) 

(3.41 

(3.3) 

(3.6) 

(3.7) 

We note that the first index accompanying the tensors yr,xr. Jr and S, is the surface index, 
while the second index is, in general, spatial, and the first index accompanying the tensors 

=.r and Br always refers to the normal to the surface, while the second one is spatial. 
Taking the structure of the tensors ar and Br into account, we conclude that Eqs.(3.4) 

will be satisfied identically: for a two-dimensional continuum the dislocation and disclination 
lines are directed along the normal to the surface and are, naturally, not terminated within 
the body. 

4. Burgers and Frank surface dislocation and disclination vectors. The 
Burgers vector b, and Frank vector Qr are defined as follows: 

[~r]=~d"~=b~+P,xr,~, [or,.= dol=Q, (4.1) 
?, 
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where C, is the Burgers contour lying on the surface and 'or is the radius vector of the 
beginning and end of the reading on the contour c,. 

Since du, = dr.r,ur, &S = drZ,ar,, we obtain, using Eqs.(3.1) and Stokes' formula 

bz= fn+~.,x~~-(T~ 
2 

XX~)Xr-na.u,*~nntr~%,~d~C, Pz 
-s 

n.(Tx X%$8.7 (4.2) 
s 

Substituting (3.3) into (4.2) and remembering that oxr.b.Yr= n.er.b.XS=O, we obtain the 
two-dimensional analogues of the corresponding three-dimensional formulas for the Burgers and 
Frank surface defect vectors 

Following the terminology of /21/, we shall call the dislocations with Burgers vectors 
lying in the tangent plane (normal to the surface) and disclinations with Frank vectors normal 
to the surface (lying in the tangent plane), the internal (external) defects. 

5. Connection with non-Memannian geometry. Three-dimensional continuum. 
We will determine, in the space of affine connectivity, for the tensor T with components 
T! @.T) the tensor DT t,‘ * with components 

(DT)jn, = ViT$df' 
where the covariant derivative is calculated using the affine connectivity coefficients rljk 

r,Tk, - t/T+' - I';,T:, - I';,, T';, 

The quantities P,>)' are, generally speaking, non-symmetric with respect to the lower 
indices, and the artisymmetric part rl"i. ; defines the torsion tensor r;'_,= S,:. 

The following relation holds for the tensor V= D'DT-Dn'f , (I?,>,? are the components 

of the curvature tensor) 

I.!_, = (R ,giiT:;, - QmpT';,i d;- a?‘ (5.1) 

R h 78). = 2 (d,J$, i rl_,;~r;:], 1 (5.2) 

The curvature and torsion tensors satisfy the Bianchi-Padov identity /27/. 
In the geometrical thecry of defects the torsion tensor S,,9! is placed in correspondence 

with the dislocation density tensor 1 i il. 21, and the curvature tensor RyDIs with the 
disciination density tensor Omr /5i 

rn' a => '~'CSpj.* 8"' = 1 ,:I',‘ F ~v~y 9" 

and the Bianchl-Padov identity yields the Eqs.(s) 

t- x" _ i"' 1, .=? ?, -. :., i. ,,.‘ -- 1 T i, )I=:. *;,;1w / 

representing the non-linear generalization cf Eqs.f2.2). 
Following ,/12/ we introd;lce the tensor D'T with COmpOnentS 

(D'T);;; = t'T;r, 6~ 

r'T:i; = T",, + l!E~T,I - ii,, :Q 

T‘ne components ci t.".e tensor I~_'! can bf regarded aqT' s components cf the tlrne derivatives 

of the local basis vectors in tangential s$&ze et the corresponding point. In order net to 
increase the notatlcr. er.i;lcyed, we shal: write the ter.sor components in the Lagrangian form 
withcut the "roofs". 

Thus we find, in the space of affine connectivity whose properties vary with time, in 
addition tothe,curvature and torsion tensors, two new characteristics, namely the tensors h,,? 

and PSh'!'. 

Formulas (5.2) and (5.4) yield the evolutionary equations for the components of the 
torsion and curvature tenscrs 

S‘ikm = r .i, 1% *,p. LpI1, In' (5.5) 

R',,,," = 2 [r['P.,, m f r'i7'?]",,m+ S,,'(P$,,~ + rzh,,m)) 

1n the Euclidean space S,: = 0, R,::! = 0. P,: = v. h: = rk P where Pare the velocity vect@r 

components, and frorr. fcrxuia !5.4j, it fclloh’s that r’y = Y-‘,t,,5. 
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In the general case the tensors h: and P,: are connected with the dislocation flux 

Jk? and the disclination flux Sk."' as follows: 

I,"' = V&urn - h,“‘, S,” = - ‘/,cmmFqr~~ (5.6) . . 

The choice of sign in these formulas is a matter of choice. Unlike in /12/, in the 
present paper the sign is chosen so that the sign of I and S in the last formulas coincides 
with the sign of the corresponding quantities in (2.4). 

The evolutionary Eqs.(5.5) yield the non-linear equations of the continuous theory of 
mobile defects /12/. Neglecting the non-linear terms in them yields the conditions (2.5). 

6. Relation to non-Riemannian geometry. Two-dimensional continuum. Let a 
tensor T, with components Z'$(ny,r) be given on the surface I with normal a. The components 
of the tensor DT, have the form 

(DT,)PB=V,T~~dr)~,(DTr) a(n) = TO b Bd Y .B f. 0 

(DTr)(,)8 = F'?,+,,W 
where the covariant derivative 

is calculated using the asymmetric coefficients of connectivity C&; the coefficients of the 

second quadratic form of the surface CB are also, generally speaking, asmetric. 
Let us define the tensor D'T, in terms of its components 

(D7Tr):, = V'TPs dr, (DlTr)=(")= T'$@'(") dr 

(D’T&~B = ~‘$‘sh,~,~ dr 

where 
V'T:B=Ta +h”,Tf -hoTa 

._ ,B P B B. .P 

and where the components /&/I~(") of the tensor hr can be regarded as components of the time 
derivatives of the local tangential basis vectors and of the normal to the surface. 

In ther case of a Riemannian surface imbedded in the Euclidean space, the components of 
the tensor hr are expressed in terms of the velocity vector components /28/ thus: 

ht. = l-‘,cq- b,fl,(“), h = v “(“) + b,pR am, a 

The following expressions hold for the components of the tensor Wr = D’DTr-DD7Tr: 

li”L p = U’yc=T”p - P,$T:J dr dq’ (6.1) 

WU’“’ = p rBCnjT'p drdq’, 11. (,,;, = J'y.a,n,T"p dr dll' 

where the components of the tensor Pr are given by 

Pafiv = G.& - ‘i,l, ?’ + b,‘h R’rll - b,,,l,~“‘J (‘3.2) 

P = b’ c&(n) a:1 - ~‘o’p,,n, - b&‘. 

Formulas (6.2) and an expression analogous to (5.2) together yield the evolutionary 
equations for the components of the torsion and curvature tensor 

S.,f'= P fmp,l?A~,‘iQ;- b,,‘bp,,,,,‘L,np,bY’“’ (6.3) 

R',,+.! = -' IV,,Pyl.E - VlaVplhY; - 'i(= (i.I;h,C,)\ + Vra (bRl,,h6’“‘) + I 

s,,,’ CP,.’ - ‘C’ohy” - b ‘li c, ,v,L) -+ $,y~f""))l 

Let us find the components of the dislocation surface density ar and disclination surface 
density 8, tensors as follows: 

afn)Y _ @s v Czp afn)tn) = @b 
afi (6.4) 

3c")v=@,vbV b (I BC+'%,gl(n)= 

9'")(") = ’ ,r’=Pt y6 (RaBv6 - b,hbgy + Qb,,) 

and connect the quantities h, and Pr with the dislocation Jr and disclination S, surface 
flux tensors as follows: 

la! = TDf - ba@,.(“) - h 6 (1. (6.5) 

I OC11, = V/') + b,@$ - hoc”) 

S,? = - @‘PUY(,,), S,(,) - - v,Ffivpafiy 

Using the formulas (6.4), (6.5) we obtain, from (6.2), (6.3), the non-linear equations 
of the continuous theory of mobile defects in a two-dimensional medium 
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CK”~)~ = - &’ (0, I$ - bal‘SBt,,)) +  .Vtn) - o’“)Yhp~ - 

u’“)fi (V5’Y - $po) + ,RV” @w4 _ 
I, 

@g 
w5 

p(n) + ~tn)‘~)~Y(n) 

CI”~“~) z _ pup (V, jgtn) + bay jr’) _ sot _ @‘)“‘)hpfl- 

a’n)5 (T/) + bpvv") + ~,,,8’~%~ 

8’fn)v=-@(‘$’ S’P-_b y’ 
a 8 D L p(m,) - ewA$ - 8’“%& - 

@,Pq + ‘p)‘~)~Vf~> 

eewm = _ po (p s 
o 5c,,j + b,&);.) - CZ(“~S~(~) - 0(“)“‘)h8~ - ~“‘)=/I,~,~ 

When the non-linear terms are neglected the linear Eqs.(3.7) follow from 16.6). 
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