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CONTINUOUS THEORY OF DISLOCATIONS AND DISCLINATIONS
IN A TWO-DIMENSIONAL MEDIUM®

YU.Z. POVSTENKO

A system of equations describing mobile defects in a two-dimensional
Cosser at continuum, i.e. in a medium whose motion is determined by the
displacement field and rotation field independent of it, is obtained.

The basic eguations of the static theory /1—5/ and dynamic continuous
theory /6=—12/ of defects (dislocations and disclinations) are known for
a three-dimensional medium, obtained by a variety of methods. A dis-
location model of the misalignment surfaces used in describing the
Martensitic transformations /2, 13/ is proposed. The dislocation
representations were used in /14—16/ to describe the grain boundaries,
and the difference dislocations within the boundaries of separation were
studied in /17, 18/. The dislocation structure of internal boundaries
of separation was described in /19, 20/ using the differential geometry
characteristics (torsion and curvature tenscrs, non-holonomic object) of
three-dimensional media. Surface dislocations and disclinations of the
separate Volterra distortions-type were studied in /21/, with liquid
crystals and various biological objects indicated as the suitable areas
of application of these concepts.

1. Surface del operator. =a surface imbedded in a three-dimensional Euclidean space
is described by the equations =z = zi (. 3" where y* are curvilinear coordinates on the surface.
Benceforth, the Latin indices will take the values cof 1, 2, 3, and the Greek indices values of
1, 2. Regarding the radius vector r of a pcint on the surface as a function of the coordinates
##, we introduce the local tangentizl basis vectors a,=ér'a® and the normal vector n=
Y,e%a, x a, where ¢ are the components of the Levi-Civita surface vector ey = %8 0,

The surface del operator /22/

vy = a%é/ay”

enables us to define, for the tensor T, defined on the surface, the operations of surface grac,

div and curl
grady T = VoTy, diveTe= Vo Ty, 1ot T =V x Ty

The rules of action of the surface del operator on the products of the gquantities are
identical to those of the three-dimensional del operator ¥ = 3¥éazf (see e.g. /23/. Essential
differences due tc the surface curvature appear on the second application cf the two-dimensicnal

del operator. For example, the following relations hold:
Ty X (VoTg) = £5-b Ty Ty (1)
T {Te X Ty) = — 280 (Ve % Tyd Ve (e b-Ty) (1.2)

while in the three-dimensional case we have
TX(TH=0, V(T rT=20 1.3
Here b==basn“aB is the tensor of the second quadratic form of the surface and H = ;b5
is the mean surface curvature.

2. Defects in the three-dimensional Cosserat continuum. To order to facilitate
the presentation of the corresponding results for the two-dimensional Cosserat continuum, we
shall give the basic equations for the three-dimensional medium {e.g. /24—26/).

The non-symmetric total deformation vy ané flexure-torsion x tensors are expressed in
terms of the displacement u and rotation o vector thus

p=ut+gXwo x=Vo
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and satisfy the conditions of compatibility following from the first formula of (1.3)
VXy—x*t{trxjg=0 {trx=g:x), VXn=0

The asterisk denotes transposition, and g is a metric tensor.

Let us write the quantities y and x in the form of a sum of the elastic and plastic
components denoted, respectively, by the indices e and p, and introduce the dislocation ¢ and
disclination @ density tensors

a=—Vxy'+a"*—(trxP)g, B=-—VxxP @.1)
satisfying, on the basis of the second relation of (1,3), the conditions (¢ is a three-dimensiona
levi-Civita tensor)
Vig—e:8=0,V.8=0 2.2}

(‘.kakm _ gmijai) =0, vkel‘m = 0)
The above conditions imply that the disclinations do not terminate within the body and

the dislocation may terminate on the disclinations whose density is an asymmetric tensor /26/.
In the linear theory we have (a dot denotes time differentiation)

y=WvdgXxw, ¥X=Vwiy=u, w=0) 2.3
The tensors of the dislocation flux J and disclination flux § are introduced as follows

/11/: . , )
J=9P T g xw’, S=xP—Vw 2.9

and the formulas (2.1) ,(2.3), (2.4) yield the kinematic equations

@ =—TUxJ+8—(trS)g, 6 =—VXxS$§ 2.5

(a.km - 9';]Jv§]j‘m + Smh‘ _ Si'igkm' e'km = Ekijvisj m)

3. Defects in the two-dimensional Cosserat continuum. The non-symmetric tensors
of total deformation y; and flexure-torsion x. are expressed in terms of the displacement ug
and rotation wy vectors as follows:

vr= Vgl T ax e, %= Veog @.1)
and satisfy, by virtue of (1.l), the conditions of compatibility (s is the metric tensor on
the surface)
Vg X ¥z &g -b-yc 4 BB Ire sty — DA% ¥ =0 3.2)
Ve X #pmm b, =0 (trpy maing)

The surface dislocation a; and disclination #8; density tensors

oy = — Vs X 3P + &5+beyy — nn trzxzp + nn-xg‘ (3.3)
by =— V. X x:” + e_,_-b-x:”
satisfy, by virtue of (1.2}, the conditions
Verge + 2Hpro, =0, VeBe 42808, =0 3.49)
Let us define the surface dislocation flux J; ané disclination flux 8; tensors
=93P =V P—axw, S =af—Tow? (3.5)
Then we obtain for o and @; the two-dimensional analogues of the equations (2.5}
oy =—"Vy X ) +2-b-Jo—notre S oo Sc* 3.6)
B =— Ve X 8; 4 2c-b-5;
or, in terms of the compcnents,
o = e (T 0 — b gy SV @7
o ) = (B (Calgim + bay ) — 8%
8V e 7T ST — b VS
BN g o OF (\_asﬁ(n; + bm‘sg)

We note that the first index accompanying the tensors ¥y, x%3.Jy and S; is the surface index,
while the second index is, in general, spatial, and the first index accompanying the tensors
@ and 6, always refers to the normal to the surface, while the second one is spatial.

Taking the structure of the tensors a; and 6, into account, we conclude that Egs.(3.4)
will be satisfied identically: for a twe-dimensional continuum the dislocation and disclination
lines are directed along the normal to the surface and are, naturally, not terminated within
the body.

4. Burgers and Frank surface dislocation and disclination vectors. The
Burgers vector by and Frank vector @, are defined as follows:

fug] = § duy =bg +Q; X re, [03] ———-fdm:=93 *.1)
& A
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where Cy is the Burgers contour lying on the surface and r,; 1is the radius vector of the
beginning and end of the reading on the contour C(j.
Since duy = dr-Tgpuy, deog = dr.Vyewy, we obtain, using Egs.(3.1) and Stokes' formula

by = S 8- [Vs X vy — (Vg X %5) X ¢t —nnox ¥+ natryp 143, Qg =Sn~(?x X %y} dZ {4.2)
$ 3

Substituting (3.3) into (4.2) and remembering that m-ey-b.yz= n.ex.b-xy =0, we obtain the
two-dimensional analogues of the corresponding three-~dimensional formulas for the Burgers and
Frank surface defect vectors

by={n-(a;-8; x dZ, @ = (n-6;ax “3)
b £
Following the terminology of /21/, we shall call the dislocations with Burgers vectors
lying in the tangent plane (normal to the surface) and disclinations with Frank vectors normal
to the surface (lying in the tangent plane), the internal (external) defects.

5. Connection with non-Riemannian geometry. Three-dimensional continuum.
We will determine, in the space of affine connectivity, for the tensor T with components
78 (¢ 1), the tensor DT with components v
(T, = v 1% '
where the covariant derivative is calculated usiné the affine connectivity coefficients f,v,»"
AFEASE 0 L AR o S S A

The quantities TI;* are, generally speaking, non-symmetric with respect to the lower
indices, and the antisymmetric part TIjj, defines the torsion temsor If = §1.

The following relation holds for the tensor V=D0'DT - DDT, (Rnf; are the components
of the curvature tensor)

V= (R T = R PT dET g (5.1)

rer’

* ¥
Rt =201

TSk sl

- ri'!?lrc:]; i 6.2

The curvature and torsion tensors satisfy the Bianchi-Padov identity /27/.

In the geometrical thecry of defects the torsion tensor S;;’. is placed in correspondence
with the dislocation density tensor «°%F /1. 2/, and the curvature tensor Ry, with the
disclination density tensor 6™ /5/

» i mg gre
Py R Jqre
and the Bianchi-Padov identity yields the Egs. (5}

C{m': = g

‘.';,7: S = P ) T;f‘: o ‘"i:.-:"’fj@k r
representing the non-linear generslization of BEgs.(2.2).
Following /12/ we introduce the tensor D'T with components
(D), = X7, at
b '3, . 1
v T‘m =T RN hq_y

m

Lok
—nm.T'q
The components cf the tensor 3;:{ can be regarded as components of the time derivatives

of the local basis vectors irn tangential space at the corresponding peint. In ordex not to
increase the notaticr emploved, we shall write the tensor components in the Lagrangiarn form
withcut the “roofs".

The tenscr W = D'DT — D'V has the folliowing components:

Wi = (PTG~ P ST v aE’ 5.3)
where - - n
P, ‘,‘ =T [ \-iigk ,‘ (54)

ik

Thus we find, in the space of affine connectivity whose properties vary with time, in
addition to the curvature and torsion tensors, two new characteristics, namely the tensors &7
and P,"T.

Formulas (5.2) and (5.4) yield the evolutionary equations for the components of the

torsion and curvature tensors
Sy = N Py .5
R Gm=2[T P "+ SV T+ 8,0 T+ TR

In the Euclidean space S8, =0, R, =0, P =0 k= V;1™ where ™ are the velocity vector

i

components, and from formula (5.4), it follows that TI'l= U;V;"w
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In the general case the tensors A} and P, are connected with the dislocation flux
J® and the disclination flux &§;™ as follows:
L= — kT, s;j'=..x/,e"‘”pm (5.8)

The choice of sign in these formulas is a matter of choice. Unlike in /12/, in the
present paper the sign is chosen so that the sign of J and S in the last formulas coincides
with the sign of the corresponding quantities in (2.4).

The evolutionary Egs.(5.5) yield the non-linear equations of the continuous theory of
mobile defects /12/. Neglecting the non-linear terms in them yields the conditions (2.5).

6. Relation to non-Riemannian geometry. Two-dimensional continuum. Let a
tensor T; with components T?B (n¥, ©) be given on the surface I with normal n. The components
of the tensor DT; have the form

(DTy)% = V4T dn', (DT;)*™ = 72b.P an?
(D) = Tpbya dn"
where the covariant derivative
VyT% =aT% onY 4 65,75 — 65,77
is calculated using the asymmetric coefficients of connectivity 6Y;; the coefficients of the
second quadratic form of the surface b,; are also, generally speaking, asymmetric.
Let us define the tensor D'T; in terms of its components
(D¥Ty )% = V' T%, dr, (D¥T)*M = T‘}Bhﬂ‘"’ dr
(D¥T3)myp = T ¥ ) 27
where
=T 0
VI =T G+ i T —h T

and where the components h,ﬁ, ™ of the tensor h. can be regarded as components of the time
derivatives of the local tangential basis vectors and of the normal to the surface.

In ther case of a Riemannian surface imbedded in the Euclidean space, the components of
the tensor b; are expressed in terms of the velocity vector components /28/ thus:

HE = Tt =3 e k= Vo™ by ®
The following expressions hold for the components of the tensor W, = D'DT; — DD'T.:
W = (P OT% — P AT %) dr dn (6.1)

720 grdyy, Wine = Pyam\Tc-‘ﬁ drdnY

o=
i)
W = Pigm)

where the components of the tensor P, are given by
Parj= Gy — Vol by Vg oy — bV (6.2)

a F
Popom = Vahm" ~ bohf
Formulas (6.2) and an expression analogous to (5.2} together yield the evolutionary

equations for the components cof the torsion and curvature tensor

N = Y . (n

Sapt = Papy’ = + Tyl — bia gy + bapyh” ™ (8.3)
. = [ J 8(n)y

Roapy = 21V Ppy V(a‘-m"\-: = Vta )y F Vo Gpph™ ) +
8o P =T b= b fh 0+ b k)

yiny

Let us find the components of the dislocation surface density «; and disclination surface
density 6. tensors as follows:

ON ffaﬂsas?‘ afmim) _ ?aaba[-s (6.4)
8 = g2 B VT by eV oM

) oy 8
B0 = 1 WV (R s — Basbay + Lastay)

and connect the quantities by and P, with the dislocation J; and disclination §; surface
flux tensors as follows:

Il = wuf — b B B (6.5)
—_ ¢ .

Tapn = Vo™ + baﬁlﬂ- L

8,0 = —eBVP i Samy = — PPy

Using the formulas (6.4), (6.5) we obtain, from (6.2), (6.3), the non-linear egquations
of the continuous theory of mobile defects in a two-dimensional medium
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@MY = — (VT — b,V S ) + ST oM B (6.6)
a(n)ﬁ (Vst‘? — bgv(m} 4+ sﬁ"v’ ’ein)(n} — sﬁvam)ﬁviu) + a(n){n)hv(n)
@ = — e (T Ty + by 1) = 8% — o ngf —

oMb (Vﬁz:’”) e bﬂv”v) + ‘ﬂve(n)ﬁ"\‘
Y
600 = (OB (p Sg¥— by Spny) — 8‘“)”3:3{5 — glBy o —
a(")ﬁsa’,’ + gimHrapviny
Hmyn) _ B
G = — g2 (Vo Spen) + bay S5.) = “(nwsv(n) - e(")(ﬂ)hﬂ- - e(")m/‘m(n)

When the non-linear terms are neglected the linear Egs.{(3.7) follow from (5.6).
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